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Historical remarks

1975 R. Riley found examples of hyperbolic structures on some knots and
links complement to S3.

1977 W. Thurston showed that a complement of a simple knot admits a
hyperbolic structure if this knot is not toric or satellite one.

1980 W. Thurston constructed a hyperbolic 3-manifold homeomorphic to
the complement of knot 41 to S3 by gluing faces of two regular ideal
tetrahedra. This manifold has a complete hyperbolic structure.

1982 J. Minkus suggested a general topological construction for the
orbifold whose singular set is a two-bridge knot in S3.

1998/2006 A. Mednykh, A. Rasskazov found a geometrical realisation of
this construction for knot 41 in H3,S3,E3.

2009 E. Molnár, J. Szirmai, A. Vesnin realised the figure-eight knot
cone-manifold in the five exotic Thurston’s geometries.

2004 H. Hilden, J. Montesinos, D. Tejada, M. Toro considered more
general construction known as butterfly.
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Manifolds & orbifiods

Definition
Manifolds and orbifolds having geometric structure can be presented as the
quotient space X/Γ, where X is one of known geometries and Γ is a
discrete isometry group acting on X with fixed points in general.

2-dim case: X = S2,E2 or H2.
3-dim case: X = S3,E3,H3, S2 ⊕ E1,H2 ⊕ E1,Nil , Sol , ˜PSL(2,R).
The image of fixed points of group Γ under canonical map X → X/Γ is
generally a knot, link or knotted graph.

Example (Vesnin, Rasskazov, 99)

Let X = H3 and Γ = F2n, n ≥ 4 is Fibonacci group acting on X by
isometries. Then X/Γ is three-dimensional sphere and the image of fixed
points of X in X/Γ is the figure-eight knot.
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Cone-manifolds

In general, the presence of a geometrical structure is not necessarily
associated with discrete groups. As a result a cone-manifold arises, which
can be viewed as a direct generalization of orbifold. In turn, in the
definition of cone-manifold, we require just a local uniformization with the
above geometries.

Definition
A Euclidean cone-manifold is a metric space obtained as the quotient space
of a disjoint union of a collection of geodesic n-simplices in En by an
isometric pairing of codimension-one faces in such a combinatorial fashion
that the underlying topological space is a manifold. Hyperbolic and
spherical cone-manifolds are defined similarly.

The metric structure near each 1-cell is determined by the conical angle,
which is the sum of dihedral angles for the edges whose identification
produces this cell.
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Cone-manifolds

A point in the singular set with conical angle α has a neighborhood
isometric to a neighborhood of a point lying on the edge of a wedge with
opening angle α whose sides are pairwise identified by way of rotating the
3-space about the edge of the wedge. We can visualise a cone-manifold as
a 3-manifold with an embedded graph on which the metric is distorted.
Furthermore, if we measure the length of an infinitesimal circle around a
component of the graph then instead of the standard 2πε we obtain αε,
where α is the conical angle along the component of the graph.
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We study the cone-manifold 41(α, α; γ) whose support is the
three-dimensional sphere S3 and the singular set Σ is the figure-eight knot
with one bridge.

We can find the fundamental group π1(S3 \ Σ) of the complement to the
graph using Wirtinger’s algorithm. It has two generators. We study the
geometric structure on this cone-manifold.
Representing the generators of the fundamental group by rotation matrices
in E3 or H3, we obtain conditions for the existence of Euclidean or
hyperbolic structure on 41(α, α; γ). To this end, find the holonomy group
of this manifold.
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Consider the holonomy mapping ϕ : π1(S3 \ Σ)→ Isom(E3) carrying the
generators s and t of the fundamental group
π1(S3 \ Σ) = 〈s, t : s`s = `ss〉, where `s = s t s t−1s−1t s t s−1t−1 to the
linear transformations S = (x − e3)S + e3, T = (x + e3)T − e3, where
e3 = (0, 0, 1) while S ,T are rotation matrices

S =
1

M2 + 1

 M2 + cos θ sin θ −2M sin θ
2

sin θ M2 − cos θ 2M cos θ2
2M sin θ

2 −2M cos θ2 −1 + M2

 ,

T =
1

M2 + 1

 M2 + cos θ − sin θ −2M sin θ
2

− sin θ M2 − cos θ −2M cos θ2
2M sin θ

2 2M cos θ2 −1 + M2


where M = cot α2 and θ is the angle of relative rotation between singular
components. The holonomy mapping carries the element `s into the
rotation through angle γ about the singular component corresponding to
the bridge of the knot. Refer as the holonomy group of the manifold
41(α, α; γ) to the group generated by the rotations S, T through angle α
about the singular component of the fundamental set.
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Fundamental polyhedron for the cone-manifold 41(α, α; γ)
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Fundamental polyhedron F can be realized in E3, H3 and S3. Identify the
curvilinear facets of F via isometric transformations S and T using the rule

S : P1P0P9P8P7P6 → P1P2P3P4P5P6,

T : P4P5P6P7P8P9 → P4P3P2P1P0P9.

Put X = cos θ2 ,Y = sin θ
2 , where θ is the angle of relative rotation between

the knot components. Then the fixed-point sets of mappings S and T are
the lines Fix(S) = (tX , tY , 1), Fix(T ) = (tX ,−tY ,−1), t ∈ R.
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The coordinates of the vertices of F are as follows

P0 = (x , 0, 0), P1 = (tX , tY , 1),

P2 = (a, b, c), P3 = (−a, b,−c),

P4 = (−tX , tY ,−1), P5 = (−x , 0, 0),

P6 = (−tX ,−tY , 1), P7 = (−a,−b, c),

P8 = (a,−b,−c), P9 = (tX ,−tY ,−1),

Q0 = (0, 0, 1), Q1 = (0, 0,−1).

Since P2 = P0 S = P6 T then{
(a, b, c) = (x , 0, 0)S

(x , 0, 0)S = (−tX ,−tY , 1) T .
(1)

Solving the second equation of (1) and recalling that X 2 + Y 2 = 1, we
obtain

x =
5 + 4M2 −M4 − 20X 2 − 4M2X 2

2MY (1 + M2 − 8X 2)
,

t =
X (3M2 − 5)

MY (1 + M2 − 8X 2)
.

(2)
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Comparing the first coordinates of vectors (x , 0, 0)S and (−tX ,−tY , 1) T
and using again the equality X 2 + Y 2 = 1, we infer that M and X satisfy

5 + 6M2 + M4 − 60X 2 − 12M2X 2 + 80X 4 = 0. (3)

Inserting (2) and (3) into the first equation of (1), we find

a =
4M2 − 15X 2 − 7M2X 2 + 20X 4

MY (1 + M2 − 8X 2)
,

b =
X (5 + M2 − 20X 2)

M(1 + M2 − 8X 2)
,

c =
M2 + 4X 2 − 3

1 + M2 − 8X 2
.

(4)

Thus, the coordinates of all the vertices of fundamental polyhedron F in
E3 are now expressed in terms of angles α and θ.

Abrosimov, Mednykh, Sokolova Geometry on the knot 41 with a bridge 10 / 50



Euclidean structure on 41(α, α; γ)

Theorem (Abr., Mednykh, Sokolova)
An Euclidean structure on 41(α, α; γ) is exist if and only if

5 + 6M2 + M4 − 60X 2 − 12M2X 2 + 80X 4 = 0,

where M = cot α2 , α ∈ (π3 , π),X = cos θ2 , θ ∈ (0, π2 ) and θ is the angle of
relative rotation between singular components.

In particular, 41( 2π
3 ,

2π
3 ; 2π) = 41( 2π

3 )
is a Euclidean orbifold whose singular
set is the figure-eight knot with conical
angle 2π

3 (the bridge disappears and we get
the situation which was previously known).
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Euclidean structure on 41(α, α; γ)

Corollary (Abr., Mednykh, Sokolova)
If cone-manifold 41(α, α; γ) admits an Euclidean structure then

1953125 cos γ =
128M2X 2

(1 + M2)10
(M2 + 5)2(11M2 − 25)

× (3125− 21875M2 + 1250M4 − 9750M6 − 11175M8 − 2823M10)

− 169869312

(1 + M2)9
+

254803968

(1 + M2)8
+

23461888

(1 + M2)7
− 136282112

(1 + M2)6
− 10575872

(1 + M2)5

+
56000512

(1 + M2)4
+

2232832

(1 + M2)3
− 14626688

(1 + M2)2
− 4716288

(1 + M2)
+ 1524197

Theorem (Abr., Mednykh, Sokolova)
If cone-manifold 41(α, α; γ) admits an Euclidean structure then its volume

Vol(41(α, α; γ)) =
8X
√

1− X 2(M4 − 50M2X 2 + 150X 2 − 25)

3M2(1 + M2 − 8X 2)2
.
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Caley-Klein model

Consider Minkowski space R4
1 with Lorentz scalar product

〈X ,Y 〉 = −x1 y1 − x2 y2 − x3 y3 + x4 y4. (5)

The Caley-Klein model of hyperbolic space is the set of vectors
K = {(x1, x2, x3, 1) : x2

1 + x2
2 + x2

3 < 1} forming the unit 3-ball in the
hyperplane x4 = 1. The lines and planes in K are just the intersections of
ball K with Euclidean lines and planes in the hyperplane x4 = 1.
The distance between vectors V and W is defined as

ch ρ (V ,W ) =
〈V ,W 〉√

〈V ,V 〉 〈W ,W 〉
. (6)

A plane in K is a set P = {V ∈ K : 〈V ,N〉 = 0}, where N is a normal
vector to the plane P.
Every of four dihedral angles between the planes P,Q with normal vectors
N,M are defined by relation

cos (̂P,Q) = ± 〈N,M〉√
〈N,N〉 〈M,M〉

. (7)
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We identify the isometry group Isom(H3) with positive Lorentz group
PSO(1, 3). The group O(1, 3) is the set of 4× 4 matrices with real
coefficients preserving the quadratic form (5). S stands for considering only
elements of determinant 1, P stands for factoring out the center.
Consider the representation of the fundamental group
π1(S3 \ Σ) = 〈s, t : s`s = `ss〉, where `s = s t s t−1s−1t s t s−1t−1 in
PSO(1, 3). Its generators are the rotation matrices

Sh =
1

M2 + 1


M2 + X 2 − Y 2 2 X Y −2 ch h M Y −2 sh h M Y

2 X Y M2 − X 2 + Y 2 2 ch h M X 2 sh h M X

2 ch h M Y −2 ch h M X M2 − ch2 h − sh2 h −2 ch h sh h

−2 sh h M Y 2 sh h M X 2 ch h sh h M2 + ch2 h + sh2 h

 ,

Th =
1

M2 + 1


M2 + X 2 − Y 2 −2 X Y −2 ch h M Y 2 sh h M Y

−2 X Y M2 − X 2 + Y 2 −2 ch h M X 2 sh h M X

2 ch h M Y 2 ch h M X M2 − ch2 h − sh2 h 2 ch h sh h

2 sh h M Y 2 sh h M X −2 ch h sh h M2 + ch2 h + sh2 h

 ,

where M = cot α
2
, X = cos θ

2
, Y = sin θ

2
.
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The coordinates of the vertices of fundamental polyhedron F in
Caley-Klein model of H3 are as follows

P0 = (x , 0, 0, 1), P1 = (tX , tY , th h, 1),

P2 = (a, b, c , 1), P3 = (−a, b,−c , 1),

P4 = (−tX , tY ,− th h, 1), P5 = (−x , 0, 0, 1),

P6 = (−tX ,−tY , th h, 1), P7 = (−a,−b, c , 1),

P8 = (a,−b,−c , 1), P9 = (tX ,−tY ,− th h, 1),

Q0 = (0, 0, th h, 1), Q1 = (0, 0,− th h, 1).
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Hyperbolic structure on 41(α, α; γ)

Theorem (Abr., Mednykh, Sokolova)
A hyperbolic structure on 41(α, α; γ) is exist if and only if{

−1 + 3M2 + 12X 2 − 4M2X 2 − 16X 4 ≥ 0, (i)

5 + 6M2 + M4 − 60X 2 − 12M2X 2 + 80X 4 > 0, (ii)

where M = cot α2 , α ∈ (π3 , π),X = cos θ2 , θ ∈ (0, π2 ) and θ is the angle of
relative rotation between singular components.
The equality in (i) is achieved under the condition γ = 2π, i.e. when the
bridge disappears. The equality in (ii) is achieved if there exist an Euclidean
structure on 41(α, α; γ).

Abrosimov, Mednykh, Sokolova Geometry on the knot 41 with a bridge 16 / 50



Natural isomorphism PSO(1, 3) ∼= PSL(2,C)

Now we identify the isometry group Isom(H3) with projective special linear
group PSL(2,C). The group PSL(2,C) is the automorphism group of the
Riemann sphere. Viewing the Riemann sphere as C ∪ {∞}, its
automorphisms are given as fractional linear transformations

z 7→ az + b

cz + d
, a, b, c , d ∈ C, ad − bc 6= 0.

The composition of these works like multiplication of the corresponding
matrices (

a b
c d

)
.

Matrices that are scalar multiples of each other define the same fractional
linear transformation, so we need to quotient out by the center.
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Consider the representation of the fundamental group
π1(S3 \ Σ) = 〈s, t : s`s = `ss〉, where `s = s t s t−1s−1t s t s−1t−1 in
PSL(2,C). Its generators are the rotation matrices

A =

(
cosα −i f sinα

−i sinα

f
cosα

)
, B =

(
cosβ −i sinβ

f
−i f sinβ cosβ

)
.

We put α = β and find that − cos γ2 = 1
2 tr(AB AB−1A−1B AB A−1B−1).

Theorem (Fricke)
Let w be a word composed by the product of finitely many 2× 2 matrices
A,B and their inverses (detA = detB = 1). Then there exist a polynomial
P(x , y , z) with integer coefficients such that trw = P(trA, trB, tr(AB)).
This is known as a Fricke polynomial.

This allowed us to prove the next theorem.
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Theorem (Abr., Mednykh, Sokolova)
If cone-manifold 41(α, α; γ) admits a hyperbolic structure then

− cos
γ

2
= 8 u2 − 16 u4 + 5w − 40 u2w + 80 u4w + 32 u2w2 − 128 u4w2

− 20w3 + 64 u2w3 + 64 u4w3 − 64 u2w4 + 16w5,

where u = 1
2 trA = 1

2 trB = cosα, w = tr(AB−1) = u2 − (1− u2) ch ρ
and ρ = 2 h + i θ is the complex hyperbolic distance between the singular
components of 41(α, α; γ).

This allows to find the complex hyperbolic distance ρ = 2 h + i θ between
the singular components of the cone-manifold 41(α, α; γ) with given
conical angles α, γ.
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From polyhedra to knots and links

Borromean Rings cone–manifold and Lambert cube

This construction done by W. Thurston, D. Sullivan and J.M. Montesinos.
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From polyhedra to knots and links

From the above consideration we get

VolB(λ, µ, ν) = 8 ·Vol L
(
λ

2
,
µ

2
,
ν

2

)
.

Recall that B(λ, µ, ν) is
i) hyperbolic iff 0 < λ, µ, ν < π (E.M. Andreev)
ii) Euclidean iff λ = µ = ν = π

iii) spherical iff π < λ, µ, ν < 3π, λ, µ, ν 6= 2π
(R. Diaz, D. Derevnin, A. Mednykh)
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From polyhedra to knots and links

Volume calculation for L(α, β, γ). The main idea.
0. Existence

L(α, β, γ) :


0 < α, β, γ < π/2, H3

α = β = γ = π/2, E3

π/2 < α, β, γ < π, S3.

1. Schläfli formula for V = Vol L(α, β, γ)

k dV =
1

2
(`αdα + `βdβ + `γdγ), k = ±1, 0 (curvature)

In particular in hyperbolic case:
∂V

∂α
= −`α

2
,

∂V

∂β
= −

`β
2
,

∂V

∂γ
= −`γ

2
(∗)

Vol L
(π

2
,
π

2
,
π

2

)
= 0. (∗∗)
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From polyhedra to knots and links

2. Relations between lengths and angles
(i) Tangent Rule

tanα

tanh `α
=

tanβ

tanh `β
=

tan γ

tanh `γ
=: T (R.Kellerhals)

(ii) Sine-Cosine Rule (3 different cases)

sinα

sinh `α

sinβ

sinh `β

cos γ

cosh `γ
= 1 (Derevnin,Mednykh)

(iii) Tangent Rule

T 2 − A2

1 + A2

T 2 − B2

1 + B2

T 2 − C 2

1 + C 2

1

T 2
= 1, (Hilden,Lozano,Montesinos)

where A = tanα,B = tanβ,C = tan γ. Equivalently,

(T 2 + 1)(T 4 − (A2 + B2 + C 2 + 1)T 2 + A2B2C 2) = 0.

Remark. (ii) ⇒(i) and (i) & (ii) ⇒ (iii).
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From polyhedra to knots and links

3. Integral formula for volume
Hyperbolic volume of L(α, β, γ) is given by

W =
1

4

∞∫
T

log

(
t2 − A2

1 + A2

t2 − B2

1 + B2

t2 − C 2

1 + C 2

1

t2

)
dt

1 + t2
,

where T is a positive root of the integrant equation (iii).
Proof. By direct calculation and Tangent Rule (i) we have:

∂W

∂α
=
∂W

∂A

∂A

∂α
= −1

2
arctan

A

T
= −`α

2
.

In a similar way

∂W

∂β
= −

`β
2

and
∂W

∂γ
= −`γ

2
.

By convergence of the integral W (π2 ,
π
2 ,

π
2 ) = 0. Hence,

W = V = Vol L(α, β, γ).
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Geometry of two bridge knots and links

The Hopf link

The Hopf link 22
1 is the simplest two component link.

The fundamental group π1(S3\22
1) = Z2 is a free Abelian group of rank 2.

It makes us sure that any finite covering of S3\22
1 is homeomorphic to

S3\22
1 again.

The orbifold 22
1(π, π) arises as a factor space by Z2-action on the projective

space P3. That is, P3 is a two-fold covering of the sphere S3 branched
over the Hopf link. It turns that the sphere S3 is a two-fold
unbranched covering of the projective space P3.
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Geometry of two bridge knots and links

S
3

=

a

b

a

b

N=(0,1)

C=(0,e )
ibA=(1,0)

B=(e ,0)
ia

Fundamental tetrahedron
T (α, β) = T

(
α, β, π2 ,

π
2 ,

π
2 ,

π
2

)
∈ S3 ⊂ R4 = C× C

for the cone-manifold 22
1(α, β).

Relations between lengths and angles: `α = β, `β = α.
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Geometry of two bridge knots and links

Theorem (Abr., Mednykh)

The Hopf link cone-manifold 22
1(α, β) is spherical for all positive α and β.

The spherical volume is given by the formula

Vol 22
1(α, β) =

αβ

2
.

Proof. Let 0 < α, β 6 π. Consider a spherical tetrahedron T (α, β) with
dihedral angles α and β prescribed to the opposite edges and with right
angles prescribed to the remained ones. To obtain a cone-manifold 22

1(α, β)
we identify the faces of tetrahedron by α- and β-rotations in the respective
edges. Hence, 22

1(α, β) is spherical and Vol 22
1(α, β) = Vol T (α, β) = αβ

2 .

We note that T (α, β) is a union of n2 tetrahedra T (αn ,
β
n ). Hence, for large

positive α and β we also obtain Vol 22
1(α, β) = n2 ·Vol T (αn ,

β
n ) = αβ

2 .
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Geometry of two bridge knots and links

The Hopf link with bridge

S
3

=

a

b

g
a

g/4

g/4

g/4

g/4

b
4x =

g/4 a/2

b/2

Fundamental tetrahedron T
(
α, β,

γ

4
,
γ

4
,
γ

4
,
γ

4

)
for the Hopf link with bridge cone-manifold H(α, β; γ).
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Geometry of two bridge knots and links

The Hopf link with bridge

Relations between lengths and angles:

Tangent Rule (Abr., Mednykh)

tan
α

2
tanh

`α
2

=
tanh `γ
tan γ

4

= tan
β

2
tanh

`β
2

Sine-Cosine Rule (Abr., Mednykh)

cos γ4
cosh `γ

=
sin α

2

cosh `α
2

·
sin β

2

cosh
`β
2

Given α, β, γ these theorems are sufficient to determine `α, `β, `γ . This
allows us to use Schläfli equation: we are able to solve the system of PDE’s
to get the volume formula.
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Geometry of two bridge knots and links

The Hopf link with bridge

Theorem (Abr., Mednykh)
The Hopf link with bridge cone manifold H(α, β; γ) is hyperbolic for any
α, β ∈ (0, π) if and only if 

γ > 2(π − α)

γ > 2(π − β)

γ < 2π

The hyperbolic volume is given by the formula

Vol H(α, β; γ) = i · S
(
α
2 ,

β
2 ,

γ
4

)
, where S

(
π
2 − x , y , π2 − z

)
=

S̃(x , y , z) =
∞∑

m=1

(
D−sin x sin z
D+sin x sin z

)m
· cos 2mx−cos 2my+cos 2mz−1

m2 − x2 + y2 − z2

is the Schläfli function.
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Geometry of two bridge knots and links

The Trefoil

Let T (α) = 31(α) be a cone manifold whose underlying space is the
three-dimensional sphere S3 and singular set is Trefoil knot T with cone
angle α.

Since T is a toric knot by the Thurston theorem its complement
T (0) = S3 \ T in the S3 does not admit hyperbolic structure. We think this
is the reason why the simplest nontrivial knot came out of attention of
geometricians. However, it is well known that Trefoil knot admits geometric
structure. H. Seifert and C. Weber (1935) have shown that the spherical
space of dodecahedron (= Poincaré homology 3-sphere) is a cyclic 5-fold
covering of S3 branched over T .
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Geometry of two bridge knots and links. The Trefoil.

Topological structure and fundamental groups of cyclic n-fold coverings
have described by D. Rolfsen (1976) and A.J. Sieradsky (1986). In the case
T (2π/n) n ∈ N is a geometric orbifold, that is can be represented in the
form X3/Γ, where X3 is one of the eight three-dimensional homogeneous
geometries and Γ is a discrete group of isometries of X3. By Dunbar (1988)
classification of non-hyperbolic orbifolds has a spherical structure for n ≤ 5,
Nil for n = 6 and P̃SL(2,R) for n ≥ 7. Quite surprising situation appears
in the case of the Trefoil knot complement T (0). By P. Norbury (see
Appendix A in the lecture notes by W. P. Neumann (1999)) the manifold
T (0) admits two geometrical structures H2 × R and P̃SL(2,R).
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Geometry of two bridge knots and links. The Trefoil.

Theorem (Derevnin, Mednykh, Mulazzani, 2008)

The Trefoil cone-manifold T (α) is spherical for π
3 < α < 5π

3 . The spherical
volume of T (α) is given by the formula

Vol (T (α)) =
(3α− π)2

12
.

Proof. Consider S3 as the unite sphere in the complex space C2 endowed
by the Riemannian metric

ds2
λ = |dz1|2 + |dz2|2 + λ(dz1dz2 + dz1dz2),

where λ = (2 sin α
2 )−1. Then S3 = (S3, ds2

λ) is the spherical space of
constant curvature +1.
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Geometry of two bridge knots and links. The Trefoil.

Then the fundamental set for T (α) is given by the following polyhedron

where E = e i α and F = e i
α−π

2 . The length `α of singular geodesic of T (α)
is given by `α = |P0P3|+ |P1P4| = 3α− π. By the Schläfli formula

dVol T (α) =
`α
2
dα =

3α− π
2

dα.

Hence,

Vol T (α) =
(3α− π)2

12
.

Abrosimov, Mednykh, Sokolova Geometry on the knot 41 with a bridge 34 / 50



Geometry of two bridge knots and links

Spherical structure on toric knots and links

The methods developed to prove Theorem 1 and Theorem 2 allowed to
establish similar results for infinite families of toric knots and links.
Consider the following cone–manifolds.

2n+1

α

T αn (   )

2n

α

β

T α,βn (       )
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Geometry of two bridge knots and links

Theorem (Kolpakov, Mednykh, 2009)
The cone-manifold Tn(α), n ≥ 1, admits a spherical structure for

2n − 1

2n + 1
π < α < 2π − 2n − 1

2n + 1
π

The length of the singular geodesics of Tn(α) is given by

lα = (2n + 1)α− (2n − 1)π.

The volume of Tn(α) is equal to

Vol Tn(α) =
1

2n + 1

(
2n + 1

2
α− 2n − 1

2
π

)2

.

Remark. The domain of the existence of a spherical metric in Theorem 3
was indicated earlier by J. Porti (2004).
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Geometry of two bridge knots and links

Theorem (Kolpakov, Mednykh, 2009)
The cone-manifold Tn(α, β), n ≥ 2, admits a spherical structure if the
conditions

|α− β| < 2π − 2π

n
, |α + β − 2π| < 2π

n

are satisfied. The lengths of the singular geodesics of Tn(α, β) are equal to
each other and are given by the formula

lα = lβ =
α + β

2
n − (n − 1)π.

The volume of Tn(α) is equal to

Vol Tn(αβ) =
1

2n

(
α + β

2
n − (n − 1)π

)2

.
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Geometry of two bridge knots and links

The figure eight knot 41

It was shown in Thurston lectures notes that the figure eight compliment
S3 \ 41 can be obtained by gluing two copies of a regular ideal tetrahedron.
Thus, S3 \ 41 admits a complete hyperbolic structure. Later, it was
discovered by A.C. Kim, H. Helling and J. Mennicke that the n-fold cyclic
coverings of the 3-sphere branched over 41 produce beautiful examples of
the hyperbolic Fibonacci manifolds. Theirs numerous properties were
investigated by many authors. 3-dimensional manifold obtained by Dehn
surgery on the figure eight compliment were described by W. P. Thurston.
The geometrical structures on these manifolds were investigated in Ph.D.
thesis by C. Hodgson.
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Geometry of two bridge knots and links. 41– knot.

The following result takes a place due to Thurston, Kojima, Hilden,
Lozano, Montesinos, Rasskazov and Mednykh.

Theorem
A cone-manifold 41(α) is hyperbolic for 0 ≤ α < α0 = 2π

3 , Euclidean for
α = α0 and spherical for α0 < α < 2π − α0.

Other geometries on the figure eight cone-manifold were studied by
C. Hodgson, W. Dunbar, E. Molnar, J. Szirmai and A. Vesnin.
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Geometry of two bridge knots and links. 41– knot.

The volume of the figure eight cone-manifold in the spaces of constant
curvature is given by the following theorem.

Theorem (Rasskazov, Mednykh, 2006)
Let V(α) = Vol 41(α) and `α is the length of singular geodesic of 41(α).
Then

(H3) V(α) =
∫ α0

α arccosh (1 + cos θ − cos 2θ)dθ, 0 ≤ α < α0 = 2π
3 ,

(E3) V(α0) =
√

3
108 `

3
α0
,

(S3) V(α) =
∫ α
α0

arccos (1 + cos θ − cos 2θ)dθ, α0 < α ≤ π, V(π) = π2

5 ,

V(α) = 2V(π)−V(2π − α), π ≤ α < 2π − α0.

Abrosimov, Mednykh, Sokolova Geometry on the knot 41 with a bridge 40 / 50



Geometry of two bridge knots and links

The 52 knot

The knot 52 is a rational knot of a slope 7/2.

Historically, it was the first knot which was related with hyperbolic
geometry. Indeed, it has appeared as a singular set of the hyperbolic
orbifold constructed by L.A. Best (1971) from a few copies of Lannér
tetrahedra with Coxeter scheme ◦ ≡ ◦ − ◦ = ◦. The fundamental set of
this orbifold is a regular hyperbolic cube with dihedral angle 2π/5. Later,
R. Riley (1979) discovered the existence of a complete hyperbolic structure
on the complement of 52. In his time, it was one of the nine known
examples of knots with hyperbolic complement.
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Geometry of two bridge knots and links. 52– knot.

A few years later, it has been proved by W. Thurston that all non-satellite,
non-toric prime knots possess this property. Just recently it became known
(2007) that the Weeks-Fomenko-Matveev manifoldM1 of volume
0.9427... is the smallest among all closed orientable hyperbolic three
manifolds. We note thatM1 was independently found by J. Przytycki and
his collaborators (1986). It was proved by A. Vesnin and M. (1998) that
manifoldM1 is a cyclic three fold covering of the sphere S3 branched over
the knot 52. It was shown by J. Weeks computer program Snappea and
proved by Moto-O Takahahsi (1989) that the complement S3 \ 52 is a
union of three congruent ideal hyperbolic tetrahedra.
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Geometry of two bridge knots and links. 52– knot.

The next theorem has been proved by A. Rasskazov and A. Mednykh
(2002), R. Shmatkov (2003) and J. Porti (2004) for hyperbolic, Euclidian
and spherical cases, respectively.

Theorem
A cone manifold 52(α) is hyperbolic for 0 ≤ α < α0, Euclidean for α = α0,
and spherical for α0 < α < 2π − α0, where α0 ' 2.40717 is a root of the
equation

−11− 24 cos(α) + 22 cos(2α)− 12 cos(3α) + 2 cos(4α) = 0.
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Geometry of two bridge knots and links. 52– knot.

Theorem (Mednykh, 2009)
Let 52(α), 0 ≤ α < α0 be a hyperbolic cone-manifold. Then the volume of
52(α) is given by the formula

Vol (52(α)) = i

∫ z

z̄
log

[
8(ζ2 + A2)

(1 + A2)(1− ζ)(1 + ζ)2

]
dζ

ζ2 − 1
,

where A = cot α2 and z , =z > 0 is a root of equation

8(z2 + A2) = (1 + A2)(1− z)(1 + z)2.

A new and completely different approach to find volume of the above
cone-manifold is contained in paper by Ji-Young Ham, Alexander Mednykh,
Vladimir Petrov, 2014.
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Geometry of twist links

The Whitehead link 52
1

The ten smallest closed hyperbolic 3− manifolds can be obtained as the
result of Dehn surgery on components of the Whitehead link (P. Milley,
2009). All of them are two-fold coverings of the 3− sphere branched over
some knots and links (A. Vesnin and M., 1998).
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The Whitehead link

Theorem (Mednykh, Vesnin, 2002)
Let W (α, β) be a hyperbolic Whitehead link cone-manifold. Then the
volume of W (α, β) is given by the formula

i

∫ z

z
log

(
2(ζ2 + A2)(ζ2 + B2)

(1 + A2)(1 + B2)(ζ2 − ζ3)

)
dζ

ζ2 − 1
,

where A = cot α2 , B = cot β2 and z , =(z) > 0 is a root of the equation

2(z2 + A2)(z2 + B2) = (1 + A2)(1 + B2)(z2 − z3).

A similar result as valid also in spherical geometry. The Euclidean volume
of W (α, β) was calculated by R. Shmatkov, 2003.
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The Whitehead link

Theorem (Abr., 2008)
Let W (α, β) be a hyperbolic Whitehead link cone-manifold. Then its
generalized Chern-Simons function is given by the formula

−1∫
z1

F (z ,A,B)dz +

−1∫
z2

F (z ,A,B)dz −
(
π − α

2π

)2

−
(
π − β

2π

)2

+ C ,

where A = cot α2 , B = cot β2 , C = 11
24 , z1 = z , z2 = z , Im(z) > 0 and z

is a root of the equation

z3 +
1

2

(
A2B2 + A2 + B2 − 1

)
z2 − A2B2z + A2B2 = 0.
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Geometry of the twist links.

The Twist link 62
3

Theorem (Derevnin, Mednykh, Mulazzani, 2004)

Let 62
3(α, β) be a hyperbolic cone-manifold. Then the volume of 62

3(α, β)
is given by the formula

i

∫ z

z
log

[
4(ζ2 + A2)(ζ2 + B2)

(1 + A2)(1 + B2)(ζ − ζ2)2

]
dζ

ζ2 − 1
.

where A = cot α2 , B = cot β2 , and z , =(z) > 0 is a root of the equation

4(z2 + A2)(z2 + B2) = (1 + A2)(1 + B2)(z − z2)2.
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Geometry of knots and links

The volumes of more complicated twist links, such as Stevedore knot 61.

Theorem (A. Mednykh, K. Shimokawa, Yo. Yoshiyuki)
The volume of the hyperbolic cone-manifold 61(α) is given by integral

i

∫ z

z
log

[
8(ζ2 + A2)

(1 + A2)(1− ζ)(2 + ζ + ζ2 − (1− ζ)
√

2 + 2ζ + ζ2)

]
dζ

ζ2 − 1
,

where A = cot α2 and z and z are complex conjugated roots of the
integrand.
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Thank you for attention!
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